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Abstract: Rheumatoid Arthritis (RA) is a systemic
autoimmune disease primarily affecting synovial joints.
Dysregulated immune and inflammatory cells, particularly
synovial macrophages (SM) and fibroblasts (SF), drive
abnormal immune responses leading to cartilage destruction
and bone erosion. We integrated transcriptome profiling
and network biology to identify key biomarkers in RA.
RNA-Seq data from two experimental conditions, RA synovial
fibroblasts (RA-SF) and TNF inhibitor–treated RA samples
(RA-TNF), were analyzed to detect differentially expressed
genes (DEGs). Comparative genome analysis and network
construction were performed using GeneMania to generate
the Rheumatoid Arthritis Gene Interactome Map (RA-GIM),
followed by pathway annotation. We identified 129 significant
DEGs and constructed RA-GIM comprising 147 nodes and
2661 edges. Functional enrichment revealed pathways
central to RA pathogenesis, including cytokine signaling
and arachidonic acid metabolism. Among the top deviated
genes, TINAGL1 emerged as a novel regulator of arachidonic
acid metabolism, while C15orf48 was identified as another
potential signature molecule implicated in RA. Our findings
highlight TINAGL1 and C15orf48 as promising biomarkers
and potential therapeutic targets in RA. Further in vitro and in
vivo validation is warranted to establish their role in disease
mechanisms and therapeutic intervention.
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1 Introduction
Rheumatoid Arthritis (RA) is a chronic, multifactorial
autoimmune disease affecting about 1% of the
global population, marked by synovial inflammation,
cartilage destruction, and bone erosion [1] [2]. The
disease originates in synovial tissues composed
mainly of Synovial Fibroblasts (SF) and Synovial
Macrophages (SM), whose dysregulated interactions
drive chronic inflammation and pannus formation [3]
[4]. Elevated pro-inflammatory cytokines such as TNF-
and IL-1, combined with reduced anti-inflammatory
mediators like IL-10 and TGF-, perpetuate joint
damage and deformity [5]. Although conventional
transcriptomic approaches have provided valuable
insights, Next-Generation Sequencing (NGS) now
enables genome-wide identification of regulatory
genes and pathways in RA [6]. In this study, RNA-Seq
was employed to profile synovial fibroblasts from RA
patients versus healthy donors, and to evaluate the
effect of TNF- inhibitors, which remain only partially
effective with sustained responses in ~60% of patient
[6]. While TNF blockade reduces inflammatory
cytokines, it is also associated with severe side effects
including infections, neurological complications,
and autoimmune-like syndromes. To address
these limitations, comparative genome analysis was
performed to identify common differentially expressed
genes (DEGs) across patient and drug-treatment
datasets. Key transcriptional regulators were
integrated with systems biology approaches to
construct immunological networks, followed by
statistical and functional annotation. This strategy
aims to uncover novel biomarkers and pathways
driving RA pathogenesis, thereby improving
understanding of joint destruction mechanisms and
guiding more targeted therapeutic interventions.

2 Materials and Methods
2.1 Data Collection
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Two publicly available RNA-Seq datasets of synovial
fibroblasts associated with Rheumatoid Arthritis
(RA) were retrieved from the NCBI Sequence Read
Archive (SRA). Dataset SRP009315 included synovial
fibroblasts from healthy donors and RA patients [8].
Dataset SRP042031 comprised RA samples with and
without TNF inhibitor treatment [9]. Together, these
datasets represent two experimental conditions: RA-SF
(disease vs. healthy) and RA-TNF (drug-treated vs.
untreated).

2.2 Preprocessing and Quality Control

Raw SRA files were converted to FASTQ using
the SRA Toolkit. Read quality was assessed with
FastQC and low-quality bases and adapter sequences
were trimmed using Trim Galore [10] [11]. Only
high-quality paired-end reads were retained for
downstream analysis.

2.3 Alignment and Quantification

Cleaned reads were aligned to the human reference
genome (GRCh38/hg38) using the STAR aligner [12].
Gene-level read counts were obtained with feature
’Counts using GENCODE v38 annotation [13].

2.4 Differential Expression Analysis

Differentially expressed genes (DEGs) were identified
separately for RA-SF and RA-TNF datasets using the
DESeq2 package [14]. Genes with adjusted p-value
(FDR) 0.05 were considered significant. Comparative
analysis was then performed to identify common
DEGs between the two conditions, and deviation in
fold-change patterns was used to prioritize candidates.

2.5 Network Construction and Functional Enrichment

Significant DEGs were uploaded to GeneMANIA
[15] to construct the Rheumatoid Arthritis Gene
Interaction Map (RA-GIM), integrating co-expression,
protein–protein interactions, pathways, and
co-localization data. Networks were visualized
and analyzed in Cytoscape 3.3.0 [16]. Topological
parameters, including degree and closeness centrality,
were used to identify central and indispensable nodes
[17].

Functional enrichment of the RA-GIM was performed
using ClueGO [18] with KEGG, Reactome, and
Gene Ontology databases (p 0.05). Genes showing
higher fold-change deviation across RA-SF and
RA-TNF datasets were cross-referenced with enriched
pathways to prioritize novel candidate biomarkers.

3 Results and Discussion
3.1 Differential Gene Expression

RNA-Seq analysis of RA-SF) and RA-TNF provided
a systems-level view of transcriptional alterations
in RA. This comparative approach yielded 129
significant genes, including two open reading frames
(c15orf48 and c11orf96), based on probability testing
and corrected values. Substantial differences in
gene expression were observed between the two
datasets. To highlight genes with higher variability, we
calculated the mean absolute deviation in fold change
and selected those with deviations 4.6 for further
investigation into their role in RA (Table S1).

2.2 Construction and functional characterization of
biological interactome

The RA-GIM interactome was constructed using 129
significant genes from RA-SF and RA-TNF datasets
through the GeneMANIA server. The network
comprised 127 interconnected genes along with
20 additional functional partners, excluding two
non-interacting molecules (GGTA1P and MIR675).
In total, the interactome contained 147 nodes and
2661 edges, with an average shared node-edge ratio
of 18.10 (Fig 1). RA-GIM displayed a scale-free
architecture, where nodes represent genes and edges
denote physical or functional associations such as
protein binding, metabolic activity, or regulatory
crosstalk [19].

The interactome was analyzed in Cytoscape using the
NetworkAnalyzer plugin to assess local and global
graph properties. Table 1 lists the top 10 deviated genes
with centrality measures. Most were highly connected,
suggesting their role as multifunctional regulators.
CXCL8 emerged as a central hub with 81 interactions
and the highest global closeness (0.61), underscoring
its essential role. CXCL5 showed the greatest deviation
with 49 partners, while TINAGL1 followed with
20. Notably, PADI2 and C15orf48 exhibited fewer
connections but high closeness centrality, indicating
potential regulatory importance.

In RA, genes interact in complex networks where
unexpected interactions may lead to dysregulated
functions. Therefore, understanding system-level
interconnectivity is essential. ClueGO, plugin in
Cytoscape performed the functional enrichment
analysis of RA-GIM. Its analysis represented
functionally annotated genes by exploring databases
like KEGG, Reactome and Gene Ontology with a
p-value < 0.05.
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Figure 1. RA Functional Gene Interactome Network. Network visualization of 147 genes and functional partners
constructed using GeneMania, illustrating 2661 molecular interactions relevant to rheumatoid arthritis. Significant genes
are displayed as yellow nodes, and additional inferred partners are highlighted in green. The dense interconnectivity
reveals potential key regulators and signaling hubs within disease-associated pathways.

3.3 Identification of signature molecules

Instead of focusing on a single gene, we extended
our analysis to highly deviated genes with fold
change deviation 4.6. Gene Ontology (GO) terms
for this group were extracted and analyzed to
better understand their role in RA pathophysiology.
Pathways linked to inflammatory and immune
responses, such as cytokine signaling [20], TNF
signaling, arachidonic acid metabolism, angiogenesis,
leukocyte pathways, apoptosis, chronic inflammation,
and cell adhesion [21], were prioritized to identify
key molecules (Fig. 2). The integration of pathway
frequency with network parameters highlighted
biologically relevant regulators. Nine genes, CCL20,
CCL5, CXCL1, CXCL5, CXCL6, CXCL8, IL1B, IL6, and
VEGFA, showed direct involvement in RA (KEGG
pathway: hsa05323) (Table S2). Since RA is a chronic
autoimmune disease, most genesweremultifunctional,
participating in multiple pathways. However,
targeting multifunctional genes could disrupt normal
metabolism and cause adverse effects. Therefore, we
emphasized top deviated genes with fewer interaction
partners to identify unexpected shared interactions
that may drive dysregulated functions in RA.

Among the functionally enriched genes, CXCL8 (k =
81), CXCL2 (k = 73), and PTGS2 (k = 73) emerged

as highly multifunctional regulators. These genes are
already reported as key players in RA pathogenesis,
though their targeting may cause unintended side
effects [22]. Using these as benchmarks, we extended
our analysis to other deviated genes.

To identify indispensable regulators and establish
a ranking, we combined theoretical graph-based
properties with biological relevance. Genes showing
high deviation and closeness, but with lower degree
and frequency (i.e., enriched in fewer pathways),
were prioritized for detailed parametric analysis. This
strategy enabled us to narrow the set of top deviated
genes to the most indispensable ones. Figure 3
illustrates these genes with their graphical properties,
deviation values, and pathway frequencies.

Based on the defined criteria, PADI2, c15orf48, and
TINAGL1 emerged as the most indispensable genes,
characterized by high closeness but low degree and
frequency. The closeness centrality of the top deviated
genes ranged from 0.51 to 0.61, indicating their strong
potential to influence other genes within the network
and their likely involvement in shared pathways.
High closeness reflects shorter distances between
nodes, suggesting that these genes may play a role
in organizing functional units or modules [23].

Interestingly, among the top deviated genes, 8 genes,
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Table 1. List of top 10 deviated genes with their expression value and graphical properties

Gene Gene Name FC (SF) FC (TNF) Dev CC

CXCL5 C-X-C motif chemokine 5 −5.81 9.42 15.24 0.57

TINAGL1 Tubulointerstitial nephritis
antigen-like

−6.99 3.91 10.90 0.52

IL1RN Interleukin-1 receptor antagonist −6.28 3.98 10.26 0.58

EREG Proepiregulin −2.81 7.03 9.84 0.56

C15orf48 Normal mucosa of
esophagus-specific gene 1

−3.74 5.67 9.40 0.51

PADI2 Protein-arginine deiminase
type-2

4.48 −4.78 −9.25 0.52

IGFBP2 Insulin-like growth
factor-binding protein 2

−6.40 2.83 9.24 0.54

IL7R Interleukin-7 receptor subunit
alpha

−0.58 8.62 9.20 0.57

CXCL8 Interleukin-8 −3.24 5.92 9.16 0.61

IL1B Interleukin-1 beta −1.10 7.29 8.39 0.58

FC: Fold Change; Dev: Deviation; CC: Closeness Centrality

Figure 2. RA Pathway Enrichment Network. Functional enrichment analysis reveals key rheumatoid arthritis-associated
pathways as interconnected nodes, derived from differentially expressed genes. The network displays pathway
relationships and gene contributions, highlighting mechanisms such as cytokine signaling, chemotaxis, immune response,
and inflammation that are central to disease pathology.

CXCL5, IL1RN, EREG, PADI2, IGFBP2, IL7R, IL1B, and
CXCL8, were already reported as prominent regulators
in RA pathogenesis (Table 2).

Since PADI2 is already a well-established regulator in
RA pathogenesis, our focus shifted toward the novel
signature molecules TINAGL1 and c15orf48 to better
understand their expression deviations and potential
roles in RA.

c15orf48, also known as NMES1 (Normal Mucosa of
Esophagus-Specific gene 1), is expressed in bone, small
intestine, colon, stomach, placenta, and esophageal
mucosa [24]. Although its precise role in RA remains
unexplored, its expression in bone suggests possible
relevance to joint pathology. Proteins with known
sequences but uncharacterized structures pose major
challenges for functional interpretation. Current
prediction methods rely on sequence or structural
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Table 2. Previously reported RA-associated signature molecules among the top deviated genes

Gene k f Dev CC Reference

CXCL5 49 34 15.24 0.57 Buckland 2014; Pickens et al. 2011

IL1RN 51 22 10.26 0.58 Tolusso et al. 2006; McInnes et al. 2007

EREG 38 12 9.84 0.56 Yamane et al. 2008; Lahoti et al. 2014

PADI2 19 12 9.25 0.52 Foulquier et al. 2007; Chang et al. 2013

IGFBP2 27 7 9.24 0.54 Suzuki et al. 2015; Matsumoto et al. 2014

IL7R 48 13 9.20 0.58 Churchman et al. 2014; Churchman 2008

IL1B 59 65 8.39 0.58 Dai et al. 2014; Tolusso et al. 2006

CXCL8 81 59 8.02 0.61 Deleuran et al. 2009; Tanabe et al. 1994

k: degree; f: frequency; Dev: deviation; CC: closeness centrality

similarity to annotated proteins, but these provide only
tentative insights and lack certainty. Considering this
limitation, we propose that c15orf48 be prioritized for
detailed characterization through in vitro and in vivo
approaches, including siRNA-based knockdown or
mouse knockout models, to elucidate its precise role
in RA pathogenesis.

The second candidate, TINAGL1, was examined
using functionally enriched GO terms (Table 3).
Notably, pathways related to response to cytokine,
lipopolysaccharide, glucocorticoid and corticosteroid
signaling, hydrogen peroxide response, and scavenger
receptor activity were significantly associated with
RA, underscoring its potential as a novel regulatory
molecule in disease progression.

To better understand the association between
TINAGL1 and RA, we performed a detailed
systems-level analysis, which highlighted its
influential role in arachidonic acid metabolism, a key
pathway driving chronic inflammation. TINAGL1, a
non-catalytic peptidase of 467 amino acids, belongs
to the glucocorticoid-inducible protein family [25].
Glucocorticoid-inducible proteins are primarily
inhibitory in nature. Previous studies have reported
that these proteins inhibit activator protein 1 (AP-1)
[26], suppress arachidonic acid metabolites [27],
and block phospholipase A2 (PLA2) activity [28],
thereby restricting the release of arachidonic acid
from phospholipids. Consistently, GO terms linked to
TINAGL1 support its involvement in glucocorticoid
response and scavenger receptor activity. Scavenger
receptors, in turn, are known to neutralize or remove
altered lipoprotein [29]. Together, these characteristics
strongly implicate TINAGL1 as a critical regulator of
arachidonic acid metabolism.

In arachidonic acid metabolism, PLA2 catalyzes the
conversion of phospholipids to arachidonic acid,

while COX1 and COX2 further convert arachidonic
acid to prostaglandins. Both arachidonic acid and
prostaglandins are potent inflammatory mediators,
and their persistence in synovial tissue sustains chronic
inflammation by recruiting cytokines, chemokines,
and immune cells [30] [31].

Expression analysis revealed that TINAGL1 was
markedly downregulated in RA-SF (FC = –6.99)
and upregulated in RA-TNF treatment (FC = 3.90)
(Table S1). These findings suggest that in severe
RA, reduced TINAGL1 expression permits enhanced
PLA2 activity, leading to excessive arachidonic acid
production and heightened inflammation. Conversely,
upon TNF inhibition, upregulation of TINAGL1 may
suppress PLA2 activity, reducing arachidonic acid
levels and attenuating inflammation. The proposed
regulatorymechanism of TINAGL1 in arachidonic acid
metabolism is depicted in Figure 4.

Currently, the most widely used drugs for treating
RA are TNF- inhibitors and blockers. TNF-, a cell
signaling cytokine, plays a central role in systemic
inflammation and is directly responsible for joint pain
and swelling. However, targeting TNF- can result
in unexpected adverse effects, since this cytokine
participates in diverse biological processes such as
apoptosis, cachexia, inflammation, cytokine-mediated
interactions, inhibition of tumorigenesis, and viral
replication. Moreover, dysregulated TNF- activity
has been implicated in a wide spectrum of diseases,
including cancer [32], inflammatory bowel disease
[33], psoriasis [34], Alzheimer’s disease [35], and
major depression [36].

In our analysis, we identified TINAGL1 as a novel
signature molecule, notable for its involvement
in a relatively small number of pathways, with
a specific and critical role in arachidonic acid
metabolism. In severe RA, joint inflammation often
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Figure 3. Top Deviated Gene Network Metrics. Bar chart displaying key network metrics degree, frequency, deviation,
and closeness for the most deviated genes identified in the analysis. The comparison highlights variation in connectivity
and centrality among top genes, providing insight into their relative influence and structural roles within the rheumatoid
arthritis interactome.

Figure 4. The proposed action of TINAGL1 on PLA2 in the Arachidonic Acid metabolic pathway.
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Table 3. GO terms associated with TINAGL1 and its associated partners

GO Term Associated Genes Found

Response to cytokine CCL5, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, EREG, GAS6, GCH1, IFIT1, IFIT3,
IL1B, IL1RN, IL6, IL7R, ISG15, KRT18, MT1X, MX1, MX2, OAS1, OAS2, OASL, PADI2,
PTGS2, RSAD2, SFRP1, SLC11A1, STAT4, TINAGL1, TNFSF18

Cellular response to cytokine stimulus CCL5, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, EREG, GAS6, IFIT1, IFIT3, IL1B,
IL1RN, IL6, IL7R, ISG15, KRT18, MT1X, MX1, MX2, OAS1, OAS2, OASL, PADI2, RSAD2,
SFRP1, STAT4, TINAGL1, TNFSF18

Cellular response to lipopolysaccharide CCL20, CCL5, CXCL8, IL1B, IL6, PDE4B, S100A8, SPON2, TINAGL1, TNFAIP3

Cellular response to molecule of bacterial
origin

CCL20, CCL5, CXCL8, IL1B, IL6, PDE4B, S100A8, SPON2, TINAGL1, TNFAIP3

Response to bacterium CCL20, CCL5, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, GCH1, IL1B, IL1RN, IL6,
ISG15, PDE4B, PTGS2, S100A8, SLC11A1, SPON2, TINAGL1, TNFAIP3

Response to glucocorticoid AQP1, IGFBP2, IL1RN, IL6, PTGS2, TINAGL1, TK1

Cellular response to hydrogen peroxide AQP1, HGF, IL6, TINAGL1, TNFAIP3

Scavenger receptor activity CFI, COLEC12, MSR1, SUSD2, TINAGL1

Cargo receptor activity CFI, COLEC12, MSR1, SUSD2, TINAGL1

Selected GO terms highlighting TINAGL1’s involvement in inflammatory and immune-related pathways

arises from the excessive production of arachidonic
acid metabolites, chemokines, and cytokines. Under
such conditions, TINAGL1 may represent a promising
therapeutic target. Instead of inhibition, drugs with
potentiator activity could be designed to enhance
TINAGL1 function, thereby restoring regulation of
arachidonic acid metabolism and ultimately reducing
joint inflammation.

4 Conclusion
Next-generation sequencing (NGS) enables rapid and
high-throughput profiling of diverse DNA sequences
within a single reaction. In this study, transcriptomic
data of synovial fibroblasts at both diseased and
treatment levels were analyzed to gain insights into
their roles in rheumatoid arthritis (RA). Comparative
analysis of RA-SF patient data and RA-TNF treatment
data, integrated with a systems biology approach,
allowed us to explore gene connectivity and
identify key regulatory molecules implicated in RA
pathogenesis. Our graph-theory–based framework
systematically identified indispensable proteins
within the RA-GIM interactome. Among these,
c15orf48 and TINAGL1 emerged as crucial molecular
signatures. Further downstream analysis revealed
the indispensable role of TINAGL1 in regulating
arachidonic acid metabolism, a pathway central to
RA-associated inflammation.

The findings provide a theoretical framework that can
be extended through in vitro and in vivo experimental
validation to confirm the mechanistic role of these
molecules and to identify more selective therapeutic
agents targeting inflammation and joint destruction.

Overall, this study highlights the significance of
synovial fibroblast–derived molecules in RA and
provides new leads for the development of potential
therapeutic targets.
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